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Abstract. We analyze the geometric phases in quantum systems coupled to a dissi-
pative environment, when the Hamiltonian of the system, and possibly its coupling
to the environment, are slowly varied in time. We find that the coupling to the en-
vironment modifies the values of the geometric phases and also induces a geometric
contribution to dephasing and relaxation. For a multi-level system with equal level
splittings, coupling to the environment makes the dynamics more complex, and we
analyze the interplay between various geometric phases in such situations.

1.1 Introduction

According to the adiabatic theorem, a quantum system remains in its instanta-
neous non-degenerate eigenstate, when the Hamiltonian varies slowly enough.
If the Hamiltonian is varied along a closed path and returns to its initial
value, the initial and final wave functions can differ only by a phase factor.
The phase, acquired by a non-degenerate state of the Hamiltonian in addition
to the usual dynamical phase −

∫
E(t)dt, is called the Berry phase [1,2]. It is

of geometric nature, i.e., it depends only on geometry of the path but not on
the rate and the details of its traversal.

The widespread criterion of adiabaticity requires that the rate of changes
of the Hamiltonian be small compared to the energy gap to the neighboring
levels. At the same time, any system is coupled, however weakly, to the rest of
the universe (which we will refer to as an environment, a bath, or a reservoir),
typically with continuous spectrum. This implies that ‘true’ adiabatic manip-
ulations are impossible, and the adiabatic behavior cannot be approached.
On the other hand, a vanishingly weak coupling to the environment cannot
change the behavior dramatically. In this context an interesting, important,
and significant question is about the Berry phase in an open quantum system.
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The Berry phases for open systems were analyzed in earlier theory work [3–8].
In some of this work the behavior of the Berry phases in systems subject to
(classical or quantum) noise was analyzed in a language, equivalent to the
master equation used below. In part of this work, the visibility of the geomet-
ric phases, masked by dephasing, was studied carefully but no modification
of the Berry phase was found; e.g., Refs. [3–6] neglected the effect of the fi-
nite rate ∂tĤ0 on the dissipative rates and the Lamb shift and as a result
they found that the BP remains intact. A modification of the Berry phase
was found in Ref. [9] for a spin-half in a magnetic field varied along a specific
path. Ref. [10] analyzed the variance of the phase and the dephasing due to a
random Berry phase, but found no change in its mean value.

Here we use an ‘operational’ definition of the Berry phase for open systems
via measurable quantities. Specifically, we analyze the evolution of the density
matrix: for an isolated system the off-diagonal entries of the density matrix
acquire phase factors, which contain the dynamic phase and the geometric
phase. It can be shown that for an open two-level system the situation is
similar: under conditions specified below, the evolution of the off-diagonal
entry in the eigenbasis is decoupled from the rest of the density matrix, and
as a result of the evolution this entry acquires a factor with a phase, which
contains the dynamic and geometric contributions. This Berry phase may
differ from its value in an isolated system, and the modification was found in
Ref. [9] for a spin-half in an external magnetic field, manipulated in a specific
way. Later [11] this modification was calculated for an arbitrary loop, traversed
by the tip of the external field, and it was shown that the modification is also of
geometric nature, similar to the Berry phase itself. Moreover, it was observed
that the modification is complex, or in other words, not only the phase but
also the dephasing acquires a geometric contribution. Recently, we have shown
that one can also generate geometric phases via adiabatic manipulations of
the properties of the noise (that is of the bath of the system-bath coupling)
and found this contribution for a two-level system [12].

In this paper we consider the adiabatic dynamics of a multilevel quantum
system coupled to an environment. The situation in multi-level systems may
be more complex. Indeed, the density matrix has more entries and even in
a static field the dynamics of different entries may influence each other. In-
deed, the secular approximation, useful for the description of the dynamics
and derivation of the Bloch-Redfield equations of motion [13–15], is not appli-
cable to systems with Liouville degeneracies, i.e., when energy gaps between
(at least) two pairs of levels are very close [16, 17]. We first analyze the gen-
eral case without Liouville degeneracies and find the values of Berry phases,
accumulated independently between various level pairs. We further analyze
the situation with degenerate level splittings and derive the coupled equa-
tions of motion for the corresponding coherences, i.e., off-diagonal elements of
the density matrix. Furthermore, we study the dynamics of the level occupa-
tions, whose evolution is governed by the rate equations. For all these cases
we find the dynamical and geometric contributions to the dynamics, that is
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to the phases and amplitudes acquired during the evolution. In particular, we
find geometric contributions to relaxation. In systems with degenerate levels
cyclic adiabatic dynamics may result in more complicated evolutions, coherent
unitary transformations of the degenerate subspace for an isolated quantum
system. Coupling to an environment may modify this behavior. In the present
paper, however, we analyze quantum systems without level degeneracies but
with possible Liouville degeneracies, which can make the dynamics non-trivial.

The analysis of geometric phases is of special interest in view of the re-
cent progress in the theoretical and experimental analysis of solid-state, es-
pecially superconducting quantum-bit nano-circuits. These systems combine
the coherence of the superconducting state with control possibilities of single-
electronic and squid devices. They are macroscopic quantum systems and their
behavior can be observed with solid-state quantum detectors. On one hand,
the level of coherence in the recent experiments is sufficiently high and allows
to study even slow adiabatic processes; indeed, recently geometric phases have
been demonstrated directly for the first time in solid-state systems [18, 19].
On the other hand, decoherence in these systems is strong enough and its ef-
fect on the geometric phases was observed in two-state quantum systems [18]
(for earlier direct observations of the Berry phase in various systems see, e.g.,
Refs. [2, 20–23]). Of special interest are geometric phases and their interplay
with decoherence in multi-qubit systems and systems, which include qubits
and quantum resonators, i.e., multilevel systems, which are analyzed in the
present paper.

The paper is organized as follows: First, we review the known results for
the influence of noise on Berry phases in a two-level system. Then we analyze
the general structure of geometric phases in multi-level systems. In the further
sections we study the geometric phases and dephasing in multi-level system
without and with equal level splittings in the energy spectrum. In Section 1.5
we analyze geometric contributions to relaxation.

1.2 Berry phase for a two-level system

Before considering the structure and values of geometric phases for a multi-
level system we review the results of Refs. [11, 12, 24, 25] for the noise contri-
bution to the Berry phase in a two-level system.

The full Hamiltonian of a two-level spin-half system and its noisy environ-
ment reads

Ĥ = −1
2
Bσ̂ − 1

2
X̂nσ̂ + Ĥbath, (1.1)

where the three terms pertain correspondingly to the spin, spin-environment
coupling, and the environment. The fast stationary fluctuating quantity X̂(t)
represents noise, and n is an adiabatically varying dimensionless vector, in-
dicating the direction and the power of fluctuations. The Berry phase can be
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measured as (a contribution to) the phase of rotation of the spin component
orthogonal to B. In other words, the off-diagonal (in the eigenbasis) entry of
the density matrix as a result of the evolution is multiplied by a factor:

ρ↑↓(t) = ρ↑↓(0)ei
∫ t
0 (B+iΓ )dt+i(Φ0+δΦ), (1.2)

where the “phase” in the exponent is complex, that is it also describes the
change in amplitude. Here the first term in the exponent,

∫
(B + iΓ )dt, gives

the dynamical phase, where

Γ = i

(
2|n+|2

∫
dΩ

2π
S(Ω)

Ω −B + i0
+ n2

z

∫
dΩ

2π
S(Ω)
Ω + i0

)
(1.3)

gives the dephasing rate (ReΓ ) and modification of the level splitting (ImΓ )
by the environment. The second term in Eq. (1.2) gives the Berry phase, Φ0

being the conventional Berry phase for an isolated system and the contribution
of the noise to the Berry phase is

δΦ =
∫ (

i
S(0)
B
− 1

2

∫
dΩ

2π
S(Ω)(3B − 2Ω)
B(Ω −B + i0)2

)
nB
B

n(B× dB)
B2

−1
2

∫ (∫
dΩ

2π
S(Ω)

(Ω −B + i0)2

)
B(n× dn)

B
(1.4)

with integration along the path of the varying fields B and n. Here S(Ω)
is the (symmetrized) noise power spectrum of the fluctuating field X̂(t). In
writing Eq. (1.4) we omitted the non-universal “boundary phase”, determined
by details of the initial preparation and the final read-out, and the integral of
a full derivative, which vanishes for a closed loop [12].

The first term on the rhs of Eq. (1.4) describes the modification of the
Berry phase by the noise [11] and arises, when the varying controlled field B
rotates about the direction of the fluctuating field n. The second term gives
the contribution due to rotation of the noise about the controlled field [12].

Below we find the generalization of Eq. (1.4) to the case of a multi-level
system.

1.3 Structure of Berry phases in a multi-level system

Geometric phases in a multi-level system may be calculated by similar means.
The Hamiltonian of a multilevel quantum system, weakly coupled to a reser-
voir, reads

Ĥ = Ĥ0(t) + X̂V̂ (t) + Ĥbath, (1.5)

where Ĥ0(t) is the Hamiltonian of the quantum system, which is varied in
time via control parameters4 Ĥbath governs the dynamics of the bath. The
4 Typically, in the discussion of geometric phases and adiabatic manipulations, one

refers explicitly to a set of control parameters R and discusses paths and the
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second term describes the coupling between the system and the bath, we take
in the form X̂V̂ , where the field X̂ of the bath describes the fluctuations
and the operator V̂ of the quantum system controls the coupling. We as-
sume that Ĥ0 and V̂ are varied slowly in time. For later use we represent the
Hamiltonian Ĥ0 in terms of its (time-dependent) eigenstates and eigenener-
gies: Ĥ0 =

∑
k Ek(t) |kt〉 〈kt| (below we often omit the subindex t).

Let us recall that the concept of the Berry phase [1, 2, 26] is meaningful
only for closed paths: During adiabatic evolution (without degeneracies and
level crossings) the system, initially in an eigenstate |k0〉, remains in an in-
stantaneous eigenstate of the Hamiltonian Ĥ0(t). If finally, at t = tP , the
controlled Hamiltonian assumes its initial value5 (i.e., the Hamiltonian Ĥ0(t)
was varied over a closed path), the final state may differ from the initial state
|k0〉 only by a phase factor, and one can separate this phase into the dynamic
and Berry’s contributions. At intermediate times, when Ĥ0(t) 6= Ĥ0(0), the
notion of the relative phase is ambiguous.

Instead of the analysis of the relative phase of the components of the wave
function one can equivalently follow the evolution of (the off-diagonal elements
of) the density matrix. For quantum systems coupled to their environments
the wave function is ill-defined, and one in fact has to analyze the density
matrix. As we find below, under certain generic conditions (and, in particular,
for weak noise) the evolution of an off-diagonal entry may be decoupled from
the rest of the density matrix; however, during the evolution such an entry gets
multiplied by a factor, which is not purely a phase factor, but also changes
the amplitude (dephasing or decay of coherence). Let us remark that this
suppression of amplitude (which also contains dynamic and geometric part in
the adiabatic limit) is well-defined also at intermediate times, since it is not
influenced by the phase uncertainty.

In connection with this discussion let us remark that there is certain free-
dom in the choice of the phase factors of the eigenstates |k〉, which however
does not influence the final results. The gauge invariance w.r.t. this choice of
the phases imposes constraints on the expressions for the geometric phases.

1.3.1 Berry phases in an isolated system

Let us first consider a closed coherent quantum system, that is a system,
which does not interact with its environment. The analysis of the evolution
is simplified by a transformation to the instantaneous eigenbasis: consider
the transformation U , which maps a fixed basis (e.g., the eigenbasis of Ĥ0

geometry of loops in the parameter space. Here, for brevity of notation, we just
discuss explicit time dependencies Ĥ0(t) and consider paths in the space of the
Hamiltonians (the B-space for two-level system); one can say that the space of
Hamiltonians serves as the (natural) parameter space.

5 It is sufficient that the eigenbasis of Ĥ0(tP ) is the same as at t = 0. By analogy
with the spin-half case, one can say that the “direction” of the Hamiltonian should
return to its initial value (cf. [12]).
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at t = 0) to the eigenbasis at time t, U : |k0〉 → |kt〉. Then we find that
the evolution of the transformed wave function ψ′ = U†ψ is described by
the Schrödinger equation with the Hamiltonian Ĥ′0 = U†Ĥ0U − iU†U̇ . The
first term is diagonal in the basis |k0〉, and for non-degenerate levels in the
adiabatic limit the second term is a weak perturbation. The matrix elements
of this perturbations are 〈k0| − iU†U̇ |l0〉 = −i 〈k| ∂t |l〉.

The effect of the perturbation for a quantum system without degenerate
levels is two-fold: it modifies the energy levels:

δEk = E′k − Ek = −i 〈k| ∂t |k〉 , (1.6)

and the eigenstates:

|k′〉 = |k0〉 − i
∑
l 6=k

〈l| ∂t |k〉
Ek − El

|l0〉 . (1.7)

This determines the evolution operator (for the transformed wave function
ψ′ and hence for ψ), which is diagonal in this basis with the eigenvalues
exp[−i

∫
dtE′k(t)]. Note that the corrections to the eigenstates (1.7) modify the

evolution operator only slightly, whereas the corrections to the eigenenergies
(1.6) are multiplied by t in the exponents and result in much stronger changes
of the evolution at growing t. (In particular, the possible difference between the
primed and non-primed bases at the initial and final moments is a negligible
effect.)

For a system with level degeneracies, the off-diagonal matrix elements of
the perturbation −iU†U̇ between degenerate states are also relevant. In fact,
the evolution in each degenerate subspace is determined by the projection of
this perturbation onto this subspace, and this may result in arbitrary uni-
tary holonomic transformations in this subspace [26]. In the current paper we
consider only systems without degenerate levels.

1.3.2 Influence of fluctuations

Our analysis of geometric phases and dephasing in an open system is based on
the Bloch-Redfield approach; we derive a markovian master equation of mo-
tion for the reduced density matrix of the quantum system, which is coupled
to a reservoir (see, e.g., Refs. [14–16,27] for the derivation and the discussion).
To take into account the slow variations of the Hamiltonian of the system,
Ĥ0, and the effect of the environment, V̂ , we perform the derivation in the
primed representation (i.e., in the primed basis). We assume the following
conditions for the time scales involved: τc, ∆E−1 � tP � T2, where τc is
the noise correlation time, T2 is the dephasing time scale (the decay time of
‘coherences’, i.e. off-diagonal elements of the density matrix), ∆E is energy
gap in the spectrum of Ĥ0. This implies, in particular, that the noise is weak
and short-correlated [16], and that on the time scale tP of the evolution the
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noise correlations are local and the coherence is not destroyed completely (and
thus the phase information can be detected). In fact, such conditions should
be specified independently for different matrix elements since the gaps to the
neighboring levels, decay times, and correlation times of various noise com-
ponents may differ. Moreover, for some matrix elements the decoherence may
dominate over the coherent evolution, changing the character of the dynamics
(cf. [28]). Here we want to understand the influence of the noise and do not
aim at a full analysis of all possible regimes of behavior, and thus would limit
ourselves to the case when the conditions specified hold uniformly for all rele-
vant matrix elements. We further introduce the notation for the typical scale
of variations, ω ∼ 1/tP , and the typical adiabaticity parameter is ω/∆E.

We analyze the phases accumulated by the system (and the dephasing)
between times 0 and tP . Detection of this phase may involve preparation of
the initial state (e.g., a superposition of various eigenstates to facilitate obser-
vation of the relative phases) and the final direct or indirect measurement. We
do not specify details of these events, and hence neglect their contributions
to the evolution (boundary effects, cf. Refs. [9, 12].

In general, the Bloch-Redfield equations couple all elements of the density
matrix: ∂ρmn = −i(Em − En)ρmn −

∑
kl Γ

kl
mnρkl. If we consider the second

term as a perturbation, we find that to the leading order the time dependence
is ρmn ∝ exp(−i(Em − En)t). Then the rotating-wave approximation shows
that only the coupling between matrix elements ρmn with equal level split-
tings Emn ≡ Em − En is relevant, and the influence of ρkl onto ρmn with
a different level splitting averages out on the times scale |Ekl − Emn|−1. In
particular, when all the level splittings are different, each off-diagonal entry
ρmn evolves on its own (Section 1.4.1). If two or more level splittings coincide,
the corresponding matrix elements follow joint evolution (Section 1.4.2). In
particular, the diagonal elements ρnn ‘correspond’ to the zero level splitting
(En − En = 0), and hence their relaxational dynamics are coupled (Sec-
tion 1.5).

As indicated above, it is convenient to perform the analysis in the primed
basis. In this basis the matrix elements of the fluctuating field are:

δVmn = Vn′m′ − Vnm = −i
∑
k 6=n

〈n| ∂t |k〉
En − Ek

Vkm − i
∑
k 6=m

〈k| ∂t |m〉
Em − Ek

Vnk . (1.8)

1.4 Calculation of geometric phases and dephasing in
multi-level systems

1.4.1 Multi-level system with non-degenerate energy splittings

Consider first a quantum system without Liouville degeneracies, that is such
a system that all level splittings Emn = Em − En are different throughout
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the evolution.6 As we have discussed above, in this situation the dynamics
of each off-diagonal element ρmn decouples from the dynamics of the other
matrix elements. The Bloch-Redfield equation of motion for this element can
be obtained from the following integro-differential master equation [14,15,27]:

(i∂t − Emn)ρmn(t) = −i
∫ t

−∞

〈[
[|nt〉 〈mt| , V̂(t)], V̂(t1)

]〉
dt1. (1.9)

Here V describes the effect of the environment on the quantum system
(cf. Eq.(1.5)), and we assume that its average over noise realizations vanishes,
when the bath is decoupled from the quantum system. The angle brackets in
Eq. 1.9 stand for averaging over noise realizations and the state of the system:
〈. . .〉 = tr(. . . ρ). In our calculations, we take the perturbation in the form

V̂ = X̂V̂ , (1.10)

where X̂ is the fluctuating field of the bath, and V̂ is an operator of the
quantum system. For further analysis, we introduce the matrix elements of
the perturbations in the instantaneous eigenbasis:

V̂ =
∑
k,l

Vkl |k〉 〈l| . (1.11)

Note that although a shift of V̂ by a scalar operator ∝ 1̂ does not influence
the level splittings of the quantum system directly, it modifies the average
value of X̂ due to the response of the bath, and thus also contributes to the
dynamics of the quantum system. V̂ is hermitian and hence Vkl = (Vlk)∗.

After using the Redfield and rotating-wave approximations, we find the
markovian equation of evolution for ρmn in the form:

∂tρmn =
(
−iEmn − Γmn + i(Φ̇0,mn

BP + δΦ̇mnBP )
)
ρmn . (1.12)

where the first term describes the dynamic phase for a coherent system, Γmn
describes the dynamical effects of the bath (the dephasing and the Lamb shift),
and for brevity we refer to it as the dephasing rate; Φ̇0,mn

BP = −(δEm−δEn) =
i(〈m| ∂t |m〉−〈n| ∂t |n〉) (cf. Eq. (1.6)) describes the contribution to the Berry
phase in a closed system, and δΦ̇BP describes the modification of the Berry
phase by the environment. The latter contribution is complex and contains
the modification of the geometric phase and also the geometric dephasing.

The dynamical dephasing rate is

Γmn = −i
∫
dΩ

2π

(∑
k

[
Sc(Ω)|Vmk|2

Ω − Emk − i0
+
Sc(−Ω)|Vnk|2

Ω + Enk − i0

]
− VmmVnn

2S(Ω)
Ω − i0

)
.

(1.13)
6 In fact, we consider a pair of levels m, n, such that Emn is different from all other

level splittings.
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Here Sc(Ω) is the Fourier image of the noise correlator Sc(t−t1) = 〈X̂(t)X̂(t1)〉,
and the noise power S(Ω) is the symmetrized correlator, i.e., S(Ω) = (Sc(Ω)+
Sc(−Ω))/2. Notice that Sc(Ω) is real, (Sc(Ω))∗ = Sc(Ω).

The noise-induced geometric phase emerges from the following expression:

iδΦ̇mnBP = i

∫
dΩ

2π

{
∑
k

[
Sc(Ω) δ(|Vmk|2)
Ω − Emk − i0

+
Sc(−Ω) δ(|Vnk|2)
Ω + Enk − i0

]
− 2S(Ω)
Ω − i0

δ(VmmVnn)

+
∑
k

[
|Vmk|2Sc(Ω)

(Ω − Emk − i0)2
δEmk −

|Vnk|2Sc(−Ω)
(Ω + Enk − i0)2

δEnk

]
+
∑
k

[
i|Vmk|2Sc(Ω)

(Ω − Emk − i0)3
Ėmk −

i|Vnk|2Sc(−Ω)
(Ω + Enk − i0)3

Ėnk

]
+
∑
k

[
iSc(Ω)

(Ω − Emk − i0)2
VmkV̇km +

iSc(−Ω)
(Ω + Enk − i0)2

V̇nkVkn

]

− iSc(Ω)
(Ω − i0)2

V̇mmVnn −
iSc(−Ω)
(Ω − i0)2

VmmV̇nn

}
, (1.14)

where V̇kl is a notation for ∂t(Vkl) = ∂t(〈k| V̂ |l〉), and this time derivative
includes the effects of the time dependence of the perturbation V̂ (‘rotation
of noise’) as well as of the basis states |k〉, |l〉 (variation of the Hamiltonian
Ĥ0(t)). Further, Ėkl is the time derivative of the level splitting, i.e., of the
difference between the kth and lth eigenenergies of Ĥ0(t). Finally, δVkl and
δEkl arise due to the difference between the primed and non-primed frames:
δVkl = V ′kl − Vkl as given by Eq. (1.8) and δEkl = δEk − δEl, where δEk =
−i 〈k| ∂r |k〉 as given by Eq. (1.6).

Let us discuss these results (1.13) and (1.14). Note that the (dynamical)
dephasing rate can be expressed via the outgoing transition rates from levels
m, n to other levels and the rate of pure dephasing (cf. Refs. [16, 17,29]):

ReΓmn =
1
2

∑
k 6=n

Γ rel
k←n +

1
2

∑
k 6=m

Γ rel
k←m + Γϕmn, (1.15)

where Γ rel
j←i = |Vij |2Sc(Eij) is the relaxation rate |i〉 → |j〉, and Γϕmn =

1
2 (Vmm − Vnn)2S(0) is the pure-dephasing rate of ρmn.

As for the modification of the level splitting, the “Lamb shift”, it can be
presented as:

ImΓmn = δEm − δEn , (1.16)

where δEm =
∑
k δE

k
m, and
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δEji = |Vij |2P.V.
∫
dΩ

2π
Sc(Ω)
Eij −Ω

(1.17)

is the modification of the energy of level i by the coupling (virtual transitions)
to level j. Note that for a two-level system the quantities δE2

1−δE1
2 and ReΓ12

depend only on the symmetrized noise correlator (cf. Ref. [11, 24]).
Now let us discuss the geometric contribution (1.14). The first two lines,

which can be denoted as −δΓmn, show the difference of the expression (1.13) in
the primed and non-rimed frames. In the fourth line one can replace VmkV̇km
by ( 1

2∂t + iΦ̇km)|Vmk|2, where Φkm is the phase of Vkm = |Vkm|eiΦkm , and
similarly V̇nkVkn = ( 1

2∂t + iΦ̇nk)|Vnk|2. Then the first terms here, ∝ ∂t|V |2,
form a full derivative together with the third line (which contains Ėmk), and
this contribution vanishes after integration over a closed loop; whereas the
terms with Φ̇’s can be combined with the second line, and these time deriva-
tives of phases and δE’s enter only in combinations δEmk + iΦ̇mk. This fact
is a consequence of the gauge invariance w.r.t. to multiplication of the basis
states |kt〉 by arbitrary time-dependent phase factors.

1.4.2 System with equal energy splittings

Consider now the simplest example of a system with a Liouville degeneracy,
i.e., a system with two pairs of energy levels, |n1〉, |m1〉 and |n2〉, |m2〉, with
equal splittings: En1m1 = En2m2 ≡ Enm (Fig. 1.1). This example allows one
to understand also the evolution in more complicated situations, for instance,
with a larger set of level pairs with the same energy splitting. We assume for
simplicity that the splittings coincide at all times and that all other energy
splittings differ from these two.

Using the Bloch-Redfield approach, we find the joint equation of motion
for the off-diagonal matrix elements of the density matrix to the leading order
in the adiabatic parameter:

d

dt

(
ρm1n1

ρm2n2

)
=

[
− iEm1n1

+i
(
C1 0
0 C2

)
+
(
−Γ 11 Γ 12

Γ 21 −Γ 22

)
+ i

(
a11 a12

a21 a22

)](
ρm1n1

ρm2n2

)
. (1.18)

Here the quantities C1,2 = Φ̇0,mini

BP give rise to the standard Berry phases for
the two off-diagonal matrix elements; the rates Γ describe the contribution of
the noise to the dynamical phase (and dephasing), whereas a’s are responsible
for the geometric contributions. The diagonal entries Γ ii of these matrices are
given by the expressions Γmini

from the previous section, Eq. (1.13), and aii

are given by δ̇Φmini

BP from the previous section, Eq. (1.14). Note that since
Eq. (1.18) is a matrix equation, we have to keep full time derivatives, e.g., in
the a-matrix, even for evolution along a closed loop.
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Fig. 1.1. A scheme of energy levels with two pairs having equal splittings. The
relaxation processes from one pair to the other make the corresponding elements of
the density matrix evolving dependently.

For the off-diagonal entries we find:

Γ 12 = −iVm1m2Vn2n1

∫
dΩ

2π

(
Sc(Ω)

Ω +∆− i0
+

Sc(−Ω)
Ω −∆− i0

)
(1.19)

= Vm1m2Vn2n1Sc(−∆) . (1.20)

Here we have introduced the notation ∆ ≡ Em1m2 = En1n2 .
The geometric contributions are controlled by

a12 = −iδ(Vm1m2Vn2n1)Sc(−∆) (1.21)

−
∫
dΩ

2π

{
Vm1m2Vn2n1

[
Sc(Ω)

(Ω +∆− i0)2
δEn2n1 −

Sc(−Ω)
(Ω −∆− i0)2

δEm2m1

]
−iSc(Ω)V̇m1m2Vn2n1

(Ω +∆− i0)2
− iSc(−Ω)Vm1m2 V̇n2n1

(Ω −∆− i0)2

−iSc(Ω)Vm1m2Vn2n1

(Ω +∆− i0)3
∆̇− iSc(−Ω)Vm1m2Vn2n1

(Ω −∆− i0)3
∆̇

}
. (1.22)

Γ 21 and a21 are given by similar expressions with the substitution 1↔ 2. In
the case of an arbitrary number N of equal splittings in the energy spectrum,
we would arrive at non-diagonal N ×N matrices Γ ij and aij , given by similar
expressions. Note also that the evolution in Eq. (1.18) is typically dominated
by the coherent terms C1,2; when these coherent terms dominate over the
noise-induced contributions Γ̌ and ǎ, the off-diagonal entries can be neglected
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as they provide only small corrections (unless C1 and C2 coincide or are very
close during the evolution).

Notice that Γ 21 (the ‘transition rate between ρm1n1 and ρm2n2 ’) is related
to the transition rates between the levels m1 and m2 and between the levels
n1 nd n2, both with the same splitting ∆:

|Γ 21| =
√
Γ rel
m2←m1

Γ rel
n2←n1

(1.23)

and similarly |Γ 12| =
√
Γ rel
m1←m2

Γ rel
n1←n2

, in the lowest-order of the expansion

in V . In particular, |Γ 21| ≤ 1
2 (Γ rel

m1←m2
+ Γ rel

n1←n2
) ≤ ReΓm1n1 = ReΓ 11.

Since the noise couples the evolution of two off-diagonal entries, by mea-
suring only one of them, one can deduce information about both Berry phases.
Consider, for example, two level pairs, each of which, in the absence of fluctu-
ations, acquires a relative geometric phase uniformly in time, with the rates
C1,2. Let us assume further that the relaxation induces transitions only in one
direction, so that Γ 21 6= 0 but Γ 12 = 0. Then one finds

ρm2n2(t) = eiΦ
2
BP−Γ

22t

[
ρm2n2(0) +

Γ 21

i(C2 − C1) + (Γ 11 − Γ 22)
ρm1n1(0)

]
− eiΦ

1
BP−Γ

11t Γ 21

i(C2 − C1) + (Γ 11 − Γ 22)
ρm1n1(0) , (1.24)

where ΦiBP = Cit is the Berry phase, which would be acquired by ρmini
in the

absence of fluctuations (i = 1, 2). In particular, the effect of the Berry phase
Φ1

BP may be observed in ρm2n2 at t ∼ 1/Γ ∼ Ci ∼ C1 − C2.

1.5 Geometric relaxation

Let us now consider the dynamics of the diagonal entries of the density ma-
trix, that is transitions between the levels (relaxation / excitation depending
on the direction in energy). All these entries ρnn correspond to zero energy
difference, En − En = 0, and their dynamics, in general, is coupled. Since
we consider systems without degenerate levels, no other entries are coupled
with the diagonal elements in the rotating-wave approximation. Thus, the
dynamics of the diagonal entries is described by a rate equation. From the
Bloch-Redfield formalism, one finds the transition rates between two distinct
levels k and m (from k to m):

Γ rel
m←k = |Vmk|2Sc(Ekm) . (1.25)

The first adiabatic correction to this expression is

γrel
m←k = δ(|Vmk|2)Sc(Ekm) + |Vmk|2S′c(Ekm)δEkm
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+
∫
dΩ

2π

[(
Sc(Ω)|Vmk|2

(Ω − Ekm − i0)3
− Sc(−Ω)|Vmk|2

(Ω + Ekm − i0)3

)
Ėkm

+
Sc(Ω)

(Ω − Ekm − i0)2
V̇mkVkm +

Sc(−Ω)
(Ω + Ekm − i0)2

VmkV̇km

]
,(1.26)

and this correction is responsible for the geometric contributions to the relax-
ational dynamics.

Note that the relaxation rates are real and that the dynamic and geomet-
ric contributions to relaxation are gauge-invariant and well-defined for open
paths. Similar to geometric phases and geometric dephasing [11] the geometric
contribution to relaxation changes sign, when the same path is traversed in
the opposite direction (i.e., when the Hamiltonian and / or the parameters of
the fluctuations are varied backwards along the same path).

1.6 Conclusions

In this paper we have analyzed the influence of fluctuations on the adiabatic
evolution in multi-level quantum systems. During adiabatic evolution the off-
diagonal entries of the system’s density matrix acquire dynamic and geometric
phases. We found that the noise modifies the values of the geometric phases
and also induces geometric contributions to dephasing and relaxation. In a
multi-level system without degenerate levels and without equal energy split-
tings for different level pairs, the dynamics of different off-diagonal entries are
decoupled, whereas in systems with equal level splittings (but no degenerate
levels) the equations of motion for several off-diagonal entries may be coupled,
which results in more complicated evolutions. Similarly, the dynamics of diag-
onal entries (occupations of the eigenstates) are coupled and are described by
the rate equations, which also contain geometric contributions. We acknowl-
edge useful discussions with A. Shnirman. This work was partially supported
by the projects INTAS 05-1000008-7923, MD-4092.2007.2, and the Dynasty
foundation.
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